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Young Children's Intuition for
Soivino Problems in iVIathematics
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and Mary Benson McMullen

ow do children become
competent mathematics
problem solvers?

Researchers and educators have been
interested in this question for many
years. Mathematics is a science of pat-
terns and reiationships, and young
children have far more abiiity to see
those patterns than we may think.
Furthermore, their natural ability to see
quantitative patterns allows them to
develop problem-solving strategies. This
ability, because it arises naturally from
real-world experiences, will be referred
to by the authors as intuition.

Intuition for problem solving becomes
more sophisticated as children get older.
Infants as young as four to six months of
age can distinguish differences in small
quantities (Starkey & Cooper 1980).
By the time they are three, most chii-
dren have developed a nonverbal sense

of number (Baroody 2000). It is not
clear whether this sense is due to their
recently acquired ability to manipulate
mental images to differentiate quan-
tity, their increasing ability to estimate
quantity, or some other process. The
ability to verbally count is usually pres-
ent by about age four, when children
become able to use counting to com-
pare the sizes of sets up to 10 or some-
times higher (Clements 2004). Because
four-year-olds use counting, they can
teil which of two sets is larger, even if
the sets have different types of objects
(Baroody 2000). Note that at age four
children's intuition about number (that
is, their ability to understand the quan-
tity of objects in sets of similar or dis-
similar objects) is based on seeing and
often touching actual objects, or at least
pictures of objects, in a meaningful, real-
life context.
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This review looks at how children in
preschool through second grade (about
ages three to eight years) Intuitively
solve the mathematical problems posed
by adults. Understanding how children's
intuition works makes it much easier to
guide them to more formal conceptions
of number and thus greater abiiity to
think quantitatively. We begin the review
by examining research that shows that
young children—usually by the age of
four—can solve word problems, or verbal
problems, two terms we will use inter-
changeably. We follow with suggestions
on how to encourage children to use
£md expand their skills for solving such
problems.

Solving word probiems

Much of our understanding of chil-
dren's intuitive problem-solving abil-
ity comes from studies on how primary
grade chiidren solve word problems
prior to formal instruction. One of the
early studies in this area (Carpenter.
Hiebert, & Moser 1981) looks at first
grade children's strategies for solv-
ing various types of addition and sul>
traction problems in which numbers
between 2 and 10 were added or sub-
tracted. The chiidren could have the
problems read aloud as many times as
they wished, and counters were available
for children who wanted to use them.

For yoin problems (such as "Mary had
3 pennies. Her father gave her 8 more
pennies. How many pennies did Mary
have altogether?") and part-part-whole
problems (such as "Some children were
ice-skating. Five were girls and 7 were
boys. How many children were skating
altogether?"), 88 percent of tbe first-
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graders used correct strategies and 80
percent correctly solved the problems.
Although the most common strategy
was making a set or sets with the coun-
ters and then counting the entire set,
many children counted on from one of
the numbers, and still others used a fact
strategy, such as "1 know 5 and 5 are
10, so 5 and 7 must be 2 more, which
is 12." The children did not do quite as
well on subtraction problems, but more
than three-fourths of them used correct
strategies for the problems (Carpenter,
Hiebert, &Moser 1981).

Knowing that young children have
natural intuitions about number
and the ability to solve verbal prob-
lems, educators have developed cur-
ricula that encourage children to
use their own strategies. One very
successful program is Cognitively
Guided Instruction (CGI) (Carpenter,
Fennema, & Franke 1996; Carpenter
et al. 1999). CGI helps teachers
understand and encourage the use
of children's intuitive strategies.
Although CGI initially targeted first
grade teachers, it has clear impli-
cations for and has been used in
kindergarten through third grade.

Rather than using number sen-
tences (for example, 2 + 4 = ?) for
the children to solve, CGI pres-
ents children with word prob-
lems verbally and in written form
and asks them to find and then
explain their own ways of solv-
ing those problems. Over time,
children naturally begin to write
number sentences to solve their
problems, but teachers do not introduce
formal ways of writing mathematics and
of solving problems until children are
comfortable with their own strategies. A
common theme of CGI and similar pro-
grams is encouraging children to share
their ideas with each other so they come
to understand the various approaches
peers use to solve problems.

A number of studies on the effective-
ness of deveiopmentally appropriate,
intuition-based programs like CGI show
that chiidren in these programs gain
a better conceptual understanding of
mathematics without losing computa-
tional ability. One research team (Cobb
et al. 1991), for example, compared
the performance of second grade chil-
dren in 10 classrooms in which teach-

ers followed Vygotskian principles and
"instruction was generally compatible
with a socioconstructivist theory of
knowledge" (p. 3) to children in 8 class-
rooms using traditional instruction.
Using methods similar to CGI methods,
researchers gave children in the socio-
constructivist classrooms relatively
challenging word problems, and the chil-
dren were to work with classmates to
develop their own methods of solving
those problems. Levels of computational
skill were similar in both types of class-
rooms, but children in the sociocon-
structivist classrooms felt less bound to

traditional solution methods,
had higher levels of conceptual under-
standing of mathematics, and believed
more in the importance of collaboration
in solving problems (Cobb et al. 1991).

Results of a four-year study of 21
primary grade CGI teachers and their
classes were similar to those in the
study of socioconstructivist classrooms.
Fennema and colleagues (1996) found
that CGI students' computational abili-
ties improved at the rate expected from
traditional instruction, yet their ability
to solve problems and their understand-
ing of underlying mathematics con-
cepts improved significantly more than
was typical with traditional instruction.
Moreover, "students showed increas-

ingly greater gains tbe longer they were
in CGI classes" (p. 430).

One expectation of the CGI program
is that teachers will gain a better under-
standing of how children intuitively
solve problems and that this under-
standing can help them encourage their
students to build problem-solving skills.
In assessing instruction methods, the
Fennema team (1996) found that of the
21 teachers, 18 fundamentally changed
their views of what it means to teach
mathematics. This change is important
because "changes in instruction of the
individual teachers were directly related
to changes in their students' achieve-

ment" (p. 403). In short, the study
shows that when primary-grade
teachers believe that children can
solve problems using their own
rather than "textbook" strategies,
and when they encourage students
to build on their own intuitive strat-
egies, problem-solving skills and
understanding of mathematical pro-
cesses improve without loss of com-

; putational proficiency.

Encouraging young children
to use their intuition for
number

While it may seem obvious, the key
to getting children to use their intu-
ition is giving them opportunities to
use it. Hiebert and colleagues (1997)
focus on several classroom features that
help children understand mathematics.
The first Is the nature of the ciassroom
task. While the research team focuses
on tasks (here, verbal problems) for
the primary grades, selection of appro-
priate tasks is just as important in the
pre-K setting. Consider this exchange
between teacher and child in a pre-
school classroom:

Educators iiave devei-
oped curricula that
encourage chiidren to use
their own strategies.
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During grocery store play, Myoung,
the teacher, says to five-year-old Kai-
iee, "Suppose you and Jane buy 12
bananas. You want to share them so
that each of you has the same num-
ber of bananas. How many bananas
do you get?" Kailee replies that
she doesn't have enough fingers to
answer the question. Myoung says
that she can borrow his, but Kailee
ignores the offer and says she will
do it in another way. She draws a big
rectangle-like shape and writes num-
bers in it—1, 2, 3, 4, 5, 6, 7 in the first
row and 8, 9,10,11,12 in the sec-
ond row. Then she draws a line in the
middle of the shape and counts the
number of numerals on each side.

Children who come to expect help with every problem
lose faith in their intuition and never develop the confi-
dence needed to tackle problems alone.

1 2 3 4
8 9 10

5 6 7
11 12

Kailee's Diagram

Kailee is clearly bothered by the dif-
ference between the sets, so Myoung
offers her a stack of yellow counting
tiles. Kailee counts out 12 tiles and
then divides them into two groups
by putting the first tile in pile A, the
second in pile B, the third in pile A,
the fourth in pile B, and so on. When
all the tiles are used, she checks the
height of both piles and notes that
they have the same number. Then she
counts the number of tiles in one pile.
"Six bananas!" she declares.

When the answer was not immedi-
ately obvious to Kailee, she did not give
up. The best way for teachers to know
if a task is at the right level for a child is
to try different tasks and adjust the dif-
ficulty up or down, depending on the
child's response. In the language of CGI
(see "CGI Multiplication and Division
Problem Types, Examples, and Typical
Strategies." p. 54), this was a partitive
division problem. Partitioning a set into
equal subsets by placing counters into
piles one at a time is a strategy children
often use. However, as will be discussed
later, the real message of this example
is that children should be allowed to fig-
ure out tbeir own methods for solving
problems.

Teachers often ask how much help
they should give when a child appears
frustrated. In this situation Myoung sug-
gested that Kailee use tiles to model

the problem, but once Kailee gets com-
fortable using counters, such a prompt
may be unnecessary. There is no rule
for wben to provide scaffolding during
problem-solving activities and when to
let a child struggle. Children wbo come
to expect belp witb every problem lose
faitb in their intuition and never develop
tbe confidence needed to tackle prob-
lems alone. More often tban not, adults
give too much belp; yet, tbere certainly
is a point at wbich too much struggling
can diminisb entbusiasm for solving
problems.

One of the Issues to address when
selecting problems is that appropri-
ate task complexity varies considerably
among cbildren of tbe same age. When
working witb a group of cbildren, teacb-
ers sbould look for tasks tbat can be
adapted to make tbem easier or harder.
For example, if another child has trou-
ble with the same banana problem that
Kailee bad. one option would be to
restate tbe problem with 4 or 6 bananas
ratber than 12. Or for a child wbo
quickly solves tbe problem, tbe teacber
might ask bim to sbare tbe 12 bananas
among 3 or 4 cbildren or ask bow many
bananas Ben would have if Ben bad 2
more tban he.

As bas been stressed, to be meaning-
ful to cbildren. matb problems need to
be expressed in some sort of concrete
context. In the problem tbat follows,
cbildren use counters (for example,
cubes or tiles), and wbile tbe counters
do not stand for otber objects such as
bananas, tbey are real objects and tbus
more meaningful tban symbols. In this
situation, tbe cubes are tbe "real world"
context tbat makes tbe problem con-
crete for cbildren.

Vicki gives each child in her pre-
schooi classroom a stick made of 10
interlocking cubes stacked together.
She asks them to hold the cube
sticks behind their backs and break
them into two parts, then bring only
one part forward. Vicki then asks
the children, "How many cubes are

left in the stick behind your back?"
Some children try to count the cubes
hidden behind their back by finger-
ing them, but others try to figure out
the answer based on the number of
cubes in the part brought forward.

Andrew, counting 7 cubes in
his one hand, announces he has 3
behind his back. Seeing 7, he knows
tbat 3 more makes 10. Jenna looks
at the cubes in ber left hand and
counts, "One, 2, 3, 4, 5, 6," pauses,
puts the stack from her left hand on
the table and says, "7 [unfolding one
finger], 8 [unfolding two fingers], 9
[three fingers], 10 [four fingers]."
Looking up, she says, "i have 4."

To extend tbis problem the teacber
could bave children work in pairs to fig-
ure out how many cubes their partner
has behind his or ber back, or sbe could
cbange the total number of cubes to cre-
ate a new problem. Sbaring reasoning
belps cbildren see other ways of think-
ing about a problem. It also affirms for
cbildren that the strategies tbat make
sense to them (their intuitive strategies)
are appropriate.

Identifying problems by type

Altbougb researchers differ some-
what on tbe names for various problem
types (Fuson 1992), it is useful for teach-
ers to consider problem classification
wben giving verbal problems to cbil-
dren. Carpenter and colleagues (1999)
identify tbree types of join and sepa-
rate problems, two types oi part-part-
whole problems, tbree types of compare
problems, a single type of multiplication
problem, and two types of division prob-
lems. (Join, separate, part-part-whole,
and compare problem types are summa-
rized in "CGI Addition and Subtraction
Problem Types, Examples, and Typical
Strategies"; multiplication and division
problem types in "CGI Multiplication and
Division Problem Types, Examples, and
Typical Strategies," p. 54.)
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CGI AdditionandSubtractionProblem Types, Examples, and Typical
Problem Type

Strategies

Join

result unknown

change unknown

beginning unknown

Example
•

Bob has 7 apples. Jane gives him 5 Children
more. How many apples does Bob
have now?

Typical Strategy*

ine total.
count out a set of 7, add 5 more to that,
l

n^an, apples . . .ane , L .0 r
Bob has some apples. Jane gives him

5 more. Now he has 12 apples. How
many apples did Bob have to start
with?

Ch.ldren start with a pile of counters and add 5 to that pile Then

they count the new pile. |f the total is not 12, they adjust the

pile by either adding more counters or taking some away until

,h« . . . . . . o Then they take away 5 and find that 7 remain

change unknown

beginning unknown

Part-part-whoie
whole unknown

part unknown

• • — .

Compare

difference unknown

z
Katie has some apples. She gives Nick

5 apples. Now she has 7 apples left.

How many apples did Katie have to
start with?

Enrique has 5 nickels and 7 pennies.

How many coins does he have?

Enrique has 12 coins. 5 are nickels and
the rest are pennies. How many pen-
nies does he have?

Children start with a pile of counters. They remove 5 counters

from the pile and count the remaining counters. If there are

not 7 remaining, they adjust the remaining counters by adding

more or taking some away until there are 7 counters. They then

_add_ba_ck_the 5 counters^nd^ountjhewhote pile to get 12.

Children make two sets of counters, one cont

other containing 7. Then they count the total

Children count out a set of 12 counters. Then they remove 5

counters from the set and count the remaining counters.

larger set unknown

smaller set unknown

Chris has 5 marbles. Eilen has 12 mar-
bles. How many more marbles does
Ellen have than Chris?

Chris has 5 marbles. Ellen has 7 more
than Chris. How many marbles does
Elien have?

Ellen has 12 marbles. She has 7 more
than Chris. How many marbles does
Chris have?

Children make two sets of counters, one containing 5 and the
other containing 7. Then they match counters from both sets in
a 1-to-1 manner until one set is used up. They count the num-
ber of unmatched counters in the larger set.

Children count out a set of 5 counters, add 7 more to that then
count the total.

Children make a row of 12 counters. Then they construct another
row of counters just below the first, adding counters until the
difference in number between the rows becomes 7 They then
count the number of counters in the second row

.0 solve this type of problem, although the strategy described is

and separate p .b le .s because t he . ,s no expl^t action l
Part

. ^ " '"'"'' °' trial-and-error-based strategies

Adapted from Carpenter et al. 1999, p. 12.
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Problem Type

Multiplication

Measurement
division

Partitive division

Example Typical Strategy

Nichoie bas 4 boxes of beads. Each box bas

5 beads. How many beads does she have

in all?

Nichoie has 20 beads. Sbe wants enough

boxes to put 5 beads in eacb. How many

boxes does she need?

Nicbole has 20 beads. She puts the beads in

4 boxes, with tbe same number of beads in

each box. How many beads are in eacb box?

Count out a group of 5, tben another set of 5, a third set,

and tbe fourth set. Then children count the total in all

sets.

Adapted from Carpenter et al. 1999. p. 34.

Count out 20 counters. Then children make a pile of 5

counters, another pile of 5, and so forth until all the

counters are used up. Then they count the number of

piles.
— ^

Count out 20 counters and tben put one counter in eacb

of 4 separate piles. Children continue by putting a sec-

ond counter in each pile and then a third, until all coun-

ters are used. Then tbey count the number of counters

in eacb pile.

Knowledge of problem types makes
it easier for a teacber to avoid inadver-
tently confusing children. For example,
in Kailee's partitive division problem,
tbe teacber asked Kailee to divide a set
into equal parts. But the teacher
could have posed tbe problem
as a measurement division prob-
lem: "Suppose you and Jane
bought 12 bananas and you want
to give 3 bananas to as many
people as you can. How many
people will get bananas?" In this
case, ratber tban dividing a set
into equal parts, tbe problem
involves "measuring out" parts
of one size into subsets and
then determining how many
subsets have been constructed
(see "CGI Multiplication and
Division Problem Types,
Examples, and Typical
Strategies"). Adults who are
used to doing division often
see no difference between par-
titive and measurement divi-
sion. To young children, how-
ever, tbey are very different.

Tbe most important reason tbat
knowledge of problem types is useful is
that conscious awareness of problem
type gives important clues about the
way in wbicb children solve the problem.
Intuitive strategies for solving verbal

problems are usually based on the way
the problems are worded (Carpenter,
Hiebert, & Moser 1981; Carpenter,
Fennema, & Franke 1996; Warfieid 2001).
In Kailee's banana problem (p. 52), where

tbe task involved breaking a wbole into
two equal parts, the methods tbat Kailee
tried involved breaking 12 into equal
parts. Her first attempt involved writing
numbers in a rectangle. Tbis is an equal
parts strategy; Kailee just could not fig-

ure out how to get the same number of
numerals on each side of the rectangle.
Sbe solved the problem by using tiles to
make equal stacks.

Had Kailee been asked to solve the
problem about how many people

wouid get 3 bananas, it Is likely
sbe would have started by
making a pile of 3 tiles (repre-
senting bananas) for tbe first
person, another pile of 3 tiles
for tbe second person, and so
forth until she ran out of tiles.
Sbe would tben bave counted
the number of piles and discov-
ered that 4 people could have
3 bananas (see measurement
division in "CGI Multiplication
and Division Problem Types,
Examples, and Typical
Strategies").

Too often, adults fail to see
wby children treat these two
types of problems differently; we
try to get children to use a par-
titive model for a measurement
problem or vice versa. However,
even when adults do not initially
see problems the way young cbil-

dren do, we can understand cbildren's
intuitions by listening as they explain
how they solve the problems. Consider
another actual classroom example
between the teacher and Chad;
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Myoung places a toy horse and

about 20 yellow counters in front of

five-year-old Chad. "Could you help

me solve this problem?" he asks

Chad. "Horse has 9 treats . . . " Chad

counts out 9 counters and arranges

them in a horizontal line. "Now

what?" he asks, fylyoung responds,

"She [Horse] has 4 more than her

friend. How many does her friend

have?" Chad makes another line of

counters, above the first, continuing

to add counters until the difference

In number between the two lines is 4.

"Horse has more than her friend," he

says. Myoung says, "Right! So how

many does her friend have?" Chad

counts the counters in the top line

and announces, "Five."

Mathematically, this problem involves
subtraction. However, in contrast to a
subtraction probiem that involves tradi-
tional take away (like "Cathy had 9 cook-
ies. She ate 5 of them. How many cook-
ies does Cathy have left?") the wording
of the horse/treat problem implies
comparison of sets. Making two sets
made sense to Chad because the prob-

hen children's intuitions are respected and valued,
and when they are encouraged to listen to other chil-
dren explain how they answer questions, they naturally
pick up more advanced ways of solving problems.

lem indicated that he needed a set of
treats for Horse and another set for her
friend. Chad then did what the prob-
lem implied: figured out how many are
available for the friend if 4 are left on
the table,

As Chad becomes more comfortable
with numbers, he will no longer need
to model two sets to solve a compari-
son problem like this. Stepping in and
pushing Chad to make a set of 9 and
take away 4 would undermine his intu-
ition. And asking him to write a number
sentence (9 - 4 = 5) to solve the prob-
lem probably is of no use. Listening to
Chad and observing and encouraging
his strategies is the best way to build his
confidence in his problem-solving skills.

More advanced strategies

The two CGI chart summaries include
samples of strategies children are likely
to use when first confronted with join,
separate, part-part-whole, compare, and
multiplication and division problems.
When children's intuitions are respected
and valued, and when they are encour-
aged to listen to other children explain
how they answer questions, they natu-
redly pick up more advanced ways of
solving problems. Consider this scenario;

Myoung says to five-year-old Ash-

ley, "If you bought 6 apples in the

morning and bought 4 more apples

in the afternoon, how many apples
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Getting correct answers is important, but it is the
process of getting those answers that is key in get-
ting children to build and trust their intuitions.

do you have altogether?" Ashley uses
her fingers to count 6 and then 4 more
and responds, "Ten." Myoung then
asks, "What if you had 6 apples and
bought 5 more?" When Ashley quickly
answers, "Eleven," Myoung asks,
"How do you know that?" Ashley
explains, "Because the last one was 4
and 6. This time was 5 and 6. Four and
6 make 10, and one more is 11."

Another child might have taken the
second question and repeated the pro-
cess used for the first, but Ashley was
comfortable enough with what she knew
to build on her response to the first
question. It is appropriate for a teacher
to prompt children to see if they can
come up with more advanced problem-
solving strategies; but if they cannot,
there is no need to push. The children
will use more sophisticated strategies
when they are ready.

Finally, consider the following class
activity:

Vicki gives each child In her class-
room a sheet of paper containing a
list of everyone's names. She says,
"There are 20 children in our class,
right? I'd like to know how many
noses there are in the room." Many
children shout out "Twenty!" Vicki
asks, "How do you know that? You

did not go around counting every-
one's nose—1, 2, 3 ..." Jeff responds,
"Because everybody has one nose,"
and Vicki says, "Good! Now, this is
going to be the challenging part: How
many ears are in our classroom?"

Some children immediately say
20, but five-year-old Ian disagrees,
stating, "No, it is 20 plus 20." Vicki
replies, "Yes, that's one way to get
the answer." Having noticed that
five-year-old Emma had touched
each name twice when counting,
Vicki says, "Emma, I saw you doing
something there with your sheet of
paper. What were you doing? Why
don't you tell everyone?" Emma
answers, "I was touching each name
two times." Vicki says, "So you are
doing 1,1, 2, 2, 3, 3?" "No," Emma
says, "It's 1, 2, [pause] 3, 4 [pause]."

The children continue working to
get their own solutions, some using
manipulatives such as color tiles and
Unifix cubes and others using letters
(like E for eyes) or dots. Later, Vicki
asks an even more challenging ques-
tion: "How many noses and ears are
in the classroom?"

In this situation, the first task—find-
ing the numher of noses—was relatively
straightforward, and it was clear from

Announcing
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Association's future and the future ofthe early childhood education field.
Contributions will be used to support a number of key efforts, including
leadership development programs, scholarships, and public policy initia-
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the multiple responses to the question
about noses that most children under-
stood the answer. Vicki moved quickly
to the more challenging question of how
many ears were in the classroom. Note
that when children were presenting
strategies for determining the number
of ears, Vicki accepted their ideas, but
the classroom culture was one in which
the children were expected to continue
working on the problem to get their own
solutions. Too often, when a problem is
solved by one child, the other children
think it is time to move on. In this set-
ting, the children believed they had to
find answers that made sense to them.
After working on the total noses and
ears problem, they shared the multiple
ways in which they had solved it.

Getting correct answers is important,
but it is the process of getting those
answers—including talking through pro-
cedures and coming to consensus on
an answer—that is key in getting chil-
dren to build and trust their intuitions.
Building this type of classroom culture
takes time and thought, but when chil-
dren know they are expected to think
and explain and when teachers listen to
what children have to say, deep learning
of mathematical ideas occurs.

Conclusion

Young children have a natural capac-
ity for number and considerable intu-
ition for solving problems. The vignettes
in this article, all with children who can
count small sets, demonstrate that to
solve problems, children do not need to
be able to count appreciably larger sets
or to write number sentences like those
used in primary grade textbooks. In fact,
when allowed to use their own strate-
gies to solve problems, many children
come up with their own primitive forms
of number sentences as an aid in solving
problems (Hiebert et al. 1997).

When teachers know the categoriza-
tions of simple word problems, such
as those used in Cognitively Guided
Instruction, they can provide structure
and variety in the problems they pose
to children. More important, however,
is building a classroom culture in which
children are expected to share their
thinking and encouraged to use their
intuition. Eariy childhood educators
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are accustomed to inviting young chii-
dren to share their ideas and thoughts
as part of a iiteracy curricuium. We need
to promote the same type of expres-
sion in number and problem solving.
Knowiedge of how chiidren soive prob-
iems is heipfui. and the easiest way to
get that knowledge is to listen to the
children. They are eager to share.
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