Caroline has 6.9 L of lemonade to serve 30 people. How many milliliters should she pour into each glass?

Use what you know about metric measurement to explain how you found your answer.

 $\ensuremath{\mathbb{C}}$ Elementary Mathematics Office • Howard County Public School System • 2013-2014

Not yet: Student shows evidence of misunderstanding, incorrect concept or procedure		Got It: Student essentially understands the target concept.	
1 Unsatisfactory: Little Accomplishment	2 Marginal: Partial Accomplishment	3 Proficient: Substantial Accomplishment	4 Excellent: Full Accomplishment
The task is attempted and some mathematical effort is made. There may be fragments of accomplishment but little or no success. Further teaching is required.	Part of the task is accomplished, but there is lack of evidence of understanding or evidence of not understanding. Further teaching is required.	Student could work to full accomplishment with minimal feedback from teacher. Errors are minor. Teacher is confident that understanding is adequate to accomplish the objective with minimal assistance.	Strategy and execution meet the content, process, and qualitative demands of the task or concept. Student can communicate ideas. May have minor errors that do not impact the mathematics.

